SU(2) and SU(1, 1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms
نویسندگان
چکیده
We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1) (as for the harmonic oscillator and the Pöschl-Teller systems) while the case κ < 0 is described by the compact group SU(2) (as for the Morse system). We construct the phase operators and the corresponding temporally stable phase eigenstates forAκ in this group-theoretical context. The SU(2) case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices.
منابع مشابه
An angular momentum approach to quadratic Fourier transform , Hadamard matrices , Gauss sums , mutually unbiased bases , unitary group and Pauli group
The construction of unitary operator bases in a finite-dimensional Hilbert space is reviewed through a nonstandard approach combinining angular momentum theory and representation theory of SU(2). A single formula for the bases is obtained from a polar decomposition of SU(2) and analysed in terms of cyclic groups, quadratic Fourier transforms, Hadamard matrices and generalized Gauss sums. Weyl p...
متن کاملQuantum phase uncertainty in mutually unbiased measurements and Gauss sums
Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in different orthogonal bases is constant equal to the inverse 1/ √ d, with d the dimension of the finite Hilbert space, are becoming more and more studied for applications such as quantum tomography and cryptography, and in relation to entangled states and to the Heisenberg-Weil group of quantum optics. C...
متن کاملGenerating Mutually Unbiased Bases and Discrete Wigner Functions for Three-Qubit System
It is known that there exists 2 + 1 mutually unbiased bases for N qubits system. Between the different MUB construction algorithms of the three-qubit case, we focus on Wootters method with discrete phase space that leads naturally to a complete set of 2 + 1 mutually unbiased bases for the state space. We construct discrete Wigner function using mutually unbiased bases from the discrete phase sp...
متن کاملA complementarity-based approach to phase in finite-dimensional quantum systems
We develop a comprehensive theory of phase for finite-dimensional quantum systems. The only physical requirement we impose is that phase is complementary to amplitude. To implement this complementarity we use the notion of mutually unbiased bases, which exist for dimensions that are powers of a prime. For a d-dimensional system (qudit) we explicitly construct d + 1 classes of maximally commutin...
متن کاملA Survey of Finite Algebraic Geometrical Structures Underlying Mutually Unbiased Quantum Measurements
The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are reviewed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier transforms, Galois fields and rings, finite and related projective geometries, and entanglement, to mention...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 2 شماره
صفحات -
تاریخ انتشار 2010